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Abstract—Analysis of a large database may yield patterns that are not obvious
by studying individual cases. We here carry out a time-series analysis of
a selection of the 1999 version of the Hatch UFO catalog, comprising 12,100
events, for which geographical and temporal data are well established. We
compare our results with those of earlier analyses by Poher and Vallee on
smaller datasets, and confirm that the event rate exhibits a modulation related to
local sidereal time (LST). Such a modulation could in principle be simply
a spurious effect due to the combined influence of a strong time-of-day
modulation, and an expected time-of-year modulation. However, we develop
a test to distinguish such a spurious pattern from an intrinsic pattern. This test
indicates that the LST modulation is intrinsic.

1. Introduction

The UFO problem—that of understanding the cause of causes of UFO reports—
is extraordinarily complicated. Many thousands of reports have been filed and
investigated by the US Air Force (projects Sign, Grudge, and Blue Book), the
French project SEPRA (first known as ‘‘GEPAN’’), and more recently by
projects in Brazil, Chile, Peru, and Uruguay. In addition, many thousands of
reports have been filed by non-governmental organizations such as APRO,
NICAP, and MUFON in the United States, and similar organizations in other
countries. A brief guide to the extensive literature on this subject is given in
Sturrock (1999, p. 381). The reader may learn of the early history from Jacobs
(1975), and form some idea of the complexity of the subject from three
encyclopedias (Clark, 1998; Sachs, 1980; Story, 1980).

It is significant that this complex problem has received scant attention from
the scientific community. Possible reasons for this lack of interest were
considered by a panel, convened by Mr. Laurance S. Rockefeller, that met at
Pocantico, New York, in September 1997 (Sturrock, 1999: 153). It appears that
one major reason for this lack of curiosity is the belief that the Air-Force-funded
Colorado Project, which led to the ‘‘Condon Report’’ (Condon & Gillmor, 1969),
established that there is no significant content to the problem. A panel set up the
National Academy of Sciences to review the Condon Report gave the report
a clean bill of health (Clemence et al., 1969), when there is much in the report to
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be criticized (Sturrock, 1987). For instance, Condon’s summary of the project is
seriously at odds with the case studies and summaries of the Project staff.

However, a great deal of data has been collected since the Condon Report, and
much of these data have been compiled in the form of computer-readable
catalogs. Probably the first computerized catalog of UFO cases was developed
by Dr. Jacques Vallee in the 1960s. Since that time, other catalogs have been
developed, including notably UFOCAT, originally compiled by Dr. David
Saunders as part of his work for the Colorado Project, and more recently
developed by Don Johnson for the Center for UFO Studies (CUFOS); UNICAT,
compiled by Dr. Willy Smith; AIRCAT, a catalog of aircraft cases compiled by
Dr. Richard F. Haines; and the *U* Database compiled by Larry Hatch (1999).
We have concentrated on the *U* database, since Hatch has kindly made his
data available in a form convenient for analysis.

In the scientific study of any phenomenon, the theoretical challenge is to
explain experimental or observational facts. In order to determine these facts, we
need to identify consistent patterns in the data, and then establish that these
patterns are intrinsic to the phenomenon, and not simply a product of the data-
acquisition and compilation processes. Poher (1973), in a seminal report,
analyzed a dataset of French UFO cases and a dataset of other worldwide cases,
and established that a number of patterns are identical in both datasets. Poher
and Vallee (1975) carried out a crucial extension of this analysis by combining and
comparing the Poher catalog with that compiled independently by Vallee. These
studies indicated that there are indeed consistent patterns in UFO data.

The purpose of this article is to extend the analyses of Poher and Vallee by
analyzing the Hatch catalog, which is much more extensive and has been
compiled independently of the compilations of Poher and Vallee. However, as
a first step in this catalog analysis, we restrict the scope of this article to time-
series analysis. Perhaps the most intriguing result of the time-series aspects of
the Poher-Vallee analyses was the strong suggestion that the rate of occurrence
of UFO events depends upon local sidereal time (LST). For this reason, the main
focus of our present analysis is to determine whether analysis of the more
extensive Hatch catalog confirms this pattern in the Poher and Vallee catalogs
and, if so, to try to determine whether this pattern is intrinsic to the phenomenon,
or extrinsic in the sense that it may be attributed to other known and understood
properties of the dataset.

In Section 2, we analyze the rate of UFO events on a historical time-scale, by
day of the week, by time of day, and by time of year. In Section 3, we carry out
a power spectrum analysis and find a notable peak at 1y�1 (one cycle per year).
Clearly, this may simply reflect a yearly variation that has a meteorological
and/or sociological origin, but it may have an astronomical cause. In order to
distinguish these two possibilities, we carry out a ‘‘running-wave’’ spectrum
analysis in Section 4. This analysis clearly indicates that the variation has an
astronomical origin. We carry out a significance test in Sections 5, and we
examine the event rate as a function of LST in Section 6. We analyze two
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simulated test cases in Section 7, and give a brief discussion of these results in
Section 8.

2. Basic Patterns

Hatch kindly selected from his 1999 database a list of 12,100 cases for which
the latitude, longitude, date, and time were known. We refer to each case as an
‘‘event,’’ leaving open the nature of the event or, indeed, whether the event really
occurred or was a hoax or misperception of a well known object or phenomenon.
The number of events is shown, as a function of year, in Figure 1 for 1890 to
1945, and in Figure 2 for 1945 to 1999. The cumulative count for 1890 to 1999
is shown in Figure 3. We see that there were only a few events before 1945, and
there was a sharp onset in 1946. The peak at 1896 to 1897 may be part of the
‘‘airship’’ wave (see, for instance, Clark, 1998:46), and the peak at 1909 may be
part of the ‘‘phantom aircraft’’ wave. Although the event rate has varied greatly
from year to year since 1945, it is clear from Figure 3 that there was a very sharp
increase in 1946. That was the year of the Kenneth Arnold report (see, for
instance, Clark, 1998:139), which received worldwide attention and initiated the
current ‘‘flying saucer’’ wave.

We now wish to examine the event rate by day of week, etc. We could take
the entire database and form the histogram by day of week, etc. However, we
wish to know whether there is any consistent pattern in the phenomenon, as
compared with a pattern that comes and goes. We have therefore divided the

Fig. 1. Number of events per year in selected database from 1890 to 1945.
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database into four time intervals A, B, C, and D, listed in Table 1, that contain
equal numbers of events we refer to as ‘‘blocks.’’

Histograms according to day of the week, for the four time-blocks, are shown
in Table 1, in which we also list the mean and standard deviation for each day of
the week. The histograms are also shown in Figure 4. It is clear from this figure

Fig. 2. Number of events per year in selected database from 1890 to 1999.

Fig. 3. Cumulative number of events in selected database from 1890 to 1999.
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that there is little evidence for a day-of-the-week pattern. We may check this
conjecture by means of the familiar chi-square test. We form the statistic

v2 ¼
XK
k¼1

ðnk � nkðexpÞÞ2

r2
k

; ð2:1Þ

where k enumerates days of the week, nk is the mean count, and rk is the
standard deviation of the count, for each day of the week.

If we consider the hypothesis that each event is independent of all other
events, and can occur on any day of the week with uniform probability, then the
appropriate choice for nk(exp) is 12,100/7, i.e. 1,729, and the appropriate choice
for rk is sqrt(1729), i.e. 41.6. For this case, Equation 2.1 gives v2¼ 18.1. For 6
degrees of freedom, the probability of obtaining this large a value of v2 or more
by chance is 0.006. Hence the hypothesis may be rejected, but not by
overwhelming evidence.

We now look to see if there is any pattern in the data that appears con-
sistently throughout the database. We investigate this question by evaluating the

TABLE 1
Periods Covered by the Four Time-Blocks

A March 1892 to November 1957
B November 1957 to March 1973
C March 1973 to August 1982
D August 1982 to November 1999

Fig. 4. Day-of-week histograms for the four time blocks A–D. The horizontal line is the mean
value.
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chi-square statistic using the experimental data of Table 2. We evaluate v2 using
data from columns 7 and 8 in Equation 2.1: if the pattern is consistent, and the
scatter in count rate is smaller than the deviation of the count rate from its
expected value, then we will expect to obtain a large value of v2 (for the given
number of degrees of freedom). On the other hand, if the count rate varies
substantially from block to block, so that the scatter is as large as or larger than
the departure from the expected rate, then we will expect v2 to be small.

We show data from columns 7 and 8 in Figure 5, which give no obvious
evidence for a consistent departure from the uniform distribution. We find that
v2¼ 3.93. For 6 degrees of freedom, there is a probability of 0.39 of obtaining
this large a value or more by chance. Hence, as expected, this test confirms that
there is no evidence for a consistent departure from uniformity with respect to
day of the week.

We have carried out a similar analysis to study the variation of event rate with
hour of the day. The corresponding histograms are shown in Figure 6. It is
obvious that there is a huge variation, which is fairly consistent among time-
blocks, of the count by time of day. The minimum is at about mid-day, and the
maximum at about 10 pm. The variation is so large that a chi-square test is
redundant. (The actual value of v2 is 684.) The same data are shown as an error-
bar display in Figure 7.

It is convenient to carry out an analysis of time-of-year variation similar to our
analysis of time-of-day variation. We have therefore divided the year into 24
equal parts (taking time of day into account) of about 15.22 days each. We refer
to these divisions as ‘‘hours of year’’ (HOY) and ordinary hours as ‘‘hours of

Fig. 5. Mean and standard deviation for number of events per day per block. The horizontal line is
the mean value.

404 P. A. Sturrock



day’’ (HOD). The histograms are shown in Figure 8, and the error-bar display in
Figure 9. This dataset also leads to a very large value of the chi-square statistic
(122.7), confirming what is obvious from the plots that there is a significant and
fairly consistent variation in the count rate with time of year. There is
a minimum around May and a broad maximum around September.

Fig. 6. HOD histograms for the four time blocks A–D. The horizontal line is the mean value.

Fig. 7. Mean and standard deviation of the number of events per hour per block. The horizontal line
is the mean value.
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3. Power Spectrum Analysis

In any investigation of a time series, power spectrum analysis can be
informative. Perhaps the simplest procedure for a large but irregular time series
is to form the ‘‘Schuster periodogram’’ or ‘‘Rayleigh power’’ (Bretthorst, 1988;
Mardia, 1972), which is given by

SRðmÞ ¼
1

N

XN
n¼1

ei2pmtn

�����
�����
2

; ð3:1Þ

where tn is the time of event n, N is the total number of events, and m is the
frequency. The power spectrum as computed from this formula is shown for
frequencies in the range 0 to 5y�1 in Figure 10. We see that, apart from the
unavoidable strong peak near zero frequency, there are two notable peaks, one at
0.42y�1 with S¼ 308, and the other close to 1y�1 with S¼ 297. The former has
no obvious significance, but the latter is most likely related to the calendar year.
It may have a purely calendar origin, due to the variation of the event rate
during the year (as shown in Figure 8), but it could conceivably have an astro-
nomical origin, since some fraction of UFO reports may be due to the misper-
ception of celestial objects.

If the events were independent, S would have an exponential distribution such
that the probability of obtaining a power S or more would be e�S. However,
events appear to be highly correlated, occurring in bunches, so we may not
interpret the power spectrum in this way. We find that in the frequency range
0 to 10y�1, there are 390 peaks. A semi-logarithmic display of the cumulative

Fig. 8. Histograms formed from HOY for the four time blocks A–D.
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distribution of these peaks is shown in Figure 11. We see that, except for the 10
to 15 strongest peaks, the cumulative distribution is close to exponential. We
find that if we ‘‘normalize’’ the Rayleigh power as follows,

S ¼ SR=25; ð3:2Þ

Fig. 10. Rayleigh power spectrum.

Fig. 9. Mean and standard deviation of the number of events per HOY per block. The horizontal
line is the mean value.
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the cumulative distribution of the normalized power satisfies

PðS . S0Þ’ e�S0 ð3:3Þ
for most of the range. Hence the power at 1y�1 corresponds to a ‘‘normalized’’ power
S¼ 12. The probability of obtaining this power or more would be about 6 10�6.

4. Running-Wave Power Spectrum Analysis

In the previous section, we looked into the possibility that the event rate
contains one or more oscillations in time. In this section, we ask a different but
related question. We look into the possibility that the event rate exhibits
a significant pattern in terms of a rotating reference frame. We know that if the
frame rotates with respect to the Earth with a one-day rotation period, there is
a very strong modulation, shown in Figures 6 and 7. If it were to turn out that
many events are due to observations of the planet Jupiter, then one would expect
to find a significant pattern in terms of a frame that has the same mean rotation
rate that Jupiter has with respect to the Earth.

It is convenient to take as our basic reference frame one in which the Sun has
a fixed location. With respect to an observer on Earth, this frame rotates with
a period of one day. With respect to an observer on a nearby star, this frame
rotates with a period of one year. With respect to this basic frame, Jupiter rotates
with a period of 398.88 days (Jupiter’s synodic period).

We denote by /n the angular position of the zenith (the position looking
vertically upward) for event n, but normalize the angle to run from 0 to 1:

w ¼ /=2p: ð4:1Þ

Fig. 11. Cumulative distribution of powers computed from Equation 3.1.
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This quantity is related the hour of day of the event by

w ¼ ðHODÞ=24: ð4:2Þ

We now denote by m the angular velocity of the test frame with respect to the
basic (Sun-locked) frame, where m is measured in cycles per year. Then we can
evaluate the possibility that events ‘‘cluster’’ with respect to the test frame by
forming the following form of the Rayleigh power:

SðmÞ ¼ 1

N

XN
n¼1

exp½i2pðwn þ mtnÞ�
�����

�����
2

; ð4:3Þ

where t is to be measured in years.
We note that m ¼ 0 corresponds to the Sun-locked frame and m ¼ 1y�1

corresponds to the star-locked frame, for which the combination wþmt has a well
known astronomical interpretation. If t is measured from 0 hours on January 1 of
some year, then t (in y�1) is related to the ‘‘hour of year’’ introduced in Section 2 by

tðmod 1Þ ¼ ðHOYÞ=24: ð4:4Þ

We see from Equations 4.2 and 4.4 that the combination wþ mt is related to the
sum of HOD and HOY. This combination is related to LST by the equation

LST ¼ HODþ HOYþ 6:67: ð4:5Þ

We noted in Section 3 that there appears to be a modulation of the event rate
with period 1 year. This annual variation may of course be due to a seasonal
variation in hours of daylight, social patterns, atmospheric conditions, etc. The
interplay of an annual modulation and the strong daily modulation shown in
Figures 6 and 7 would lead to a combined effect that may be written
schematically as a probability distribution function (pdf) given by

PðHOD;HOYÞ ¼ PðHODÞPðHOYÞ; ð4:6Þ

where P(HOD) and P(HOY) are the pdf’s for events in terms of HOD and HOY,
respectively. Since each pdf is periodic, with period 24, the simplest
modulations are of the form

PðHODÞ ¼ 1þ�D sin 2p
HOD
24

þ vD

� �
ð4:7Þ

and

PðHOYÞ ¼ 1þ�Y sin 2p
HOY
24

þ vY

� �
: ð4:8Þ
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We see that Equation 4.6 now yields

PðHOD;HOYÞ ¼ 1þ�D sin 2p
HOD
24

þ vD

� �
þ�Y sin 2p

HOY
24

þ vY

� �

þ 1

2
�D�Y cos 2p

HOD
24

þ vD � 2p
HOY
24

� vY

� ��

� cos 2p
HOD
24

þ vD þ 2p
HOY
24

þ vY

� ��
ð4:9Þ

leading to a term that is a function of the LST and another term, of exactly the
same amplitude, that is a function of the quantity

ALST ¼ HOD� HOYþ 6:67; ð4:10Þ

which we refer to as the ‘‘Alias Local Sidereal Time’’ (ALST). If the Rayleigh
power defined by Equation 4.3 leads to a power spectrum with two equal peaks
at m¼ 1y�1 and at m¼�1y�1, we may infer that the annual modulation found in
the analysis of Section 3 was due simply to the seasonal effect. But if we find
that there is a strong peak at m ¼ 1y�1, and no peak—or only a weak peak—at
m¼�1y�1, we may infer that the annual modulation has some kind of astronom-
ical origin.

The power spectrum in terms of normalized power is shown for frequencies in
the range�5 to 5y�1 in Figure 12, in which the powers for positive frequencies
are shown as positive quantities, and the powers for negative frequencies are
shown as negative quantities. Ignoring the inevitable large peak at zero

Fig. 12. Running-wave power spectrum, forward waves shown with positive power, and reverse
waves shown with the negative of the power.
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frequency, we see that there are significant peaks at or near m¼ 1y�1 (S¼ 125)
and m ¼ 2y�1 (S ¼ 77). At exactly m ¼ 1y�1, S ¼ 102, and at exactly m ¼ 2y�1,
S¼75. By contrast, at exactly m¼�1y�1, S¼3.5, and at exactly m¼�2y�1, S¼8.5.

A semi-logarithmic display of the cumulative distribution of peaks for the
frequency range�10 to 10y�1 is shown in Figure 13. We again find that, except
for a few peaks, the cumulative distribution is close to exponential. If we
‘‘normalize’’ the Rayleigh power as follows,

S ¼ SR=7; ð4:11Þ

the cumulative distribution of the normalized power satisfies

PðS . S0Þ’ e�S0 ð4:12Þ

for most of the range. Hence the peak near m ¼ 1y�1 for the forward wave
corresponds to a normalized power of 17.9; the probability of obtaining this
power or higher is about 1.7 10�8. The peak near m¼ 2y�1 for the forward wave
corresponds to a normalized power of 11.0; the probability of obtaining this
power or higher is about 1.7 10�5.

Since the power spectrum computed from Equation 4.3 is not symmetric in
positive and negative frequencies, it appears not to be due to the interplay of the
HOD and HOY modulations. The asymmetry indicates that there is a modulation
in terms of LST. It is not unreasonable that the modulation should show up at
m ¼ 2y�1 as well as at m ¼ 1y�1, since Equations 4.7 and 4.8 represent only the
simplest approximations to the pdfs, and more accurate approximations must be
expected to contain terms of higher order.

Fig. 13. Cumulative distribution of powers computed from Equation 4.3.
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5. Test of LST Peaks in Running-Wave Spectrum

We saw that the distribution of peak powers differs significantly from the form
in Equation 4.12 to be expected of independent random variables. This is
because, as mentioned earlier, consecutive counts of events are highly correlated,
since events arrive in ‘‘bunches.’’ Hence we need a more reliable procedure for
obtaining significance estimates.

A convenient method of obtaining robust significance estimates is the ‘‘shuffle
test.’’We retain the actual lists of times of events and of times of day of events, but
we randomly reassign members of one list to members of the other list. For each
such ‘‘shuffle,’’ we compute the power using Equation 4.3. We may then
determine the fraction of shuffles for which the power exceeds any specified value.

We have carried out this procedure for both m¼ 1y�1 and m¼ 2y�1, for 10,000

Fig. 14. Results of a test of 10,000 shuffles for m ¼ 1y�1 showing (thick line) the logarithm of
the fraction of trials that give a power exceeding a value shown in the abscissa. The thin
line is the curve computed from Equation 5.2. The asterisk shows the actual power
(S ¼ 102.3) for m¼ 1y�1.

TABLE 2
Histogram Data for Breakdown by Day of the Week

A B C D Total Mean SD

Sunday 459 399 441 464 1763 440.75 29.53
Monday 458 452 412 486 1808 452.00 30.51
Tuesday 400 459 420 384 1663 415.75 32.38
Wednesday 433 409 405 440 1687 421.75 17.35
Thursday 478 423 440 390 1731 432.75 36.62
Friday 447 446 476 449 1818 454.50 14.39
Saturday 350 437 431 412 1630 407.50 39.79
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shuffles each. We show in Figure 14 the log of the fraction (ordinate) of simula-
tions for m¼1y�1 that have power in excess of the value shown in the abscissa. We
find that this curve is similar in shape to that of the ‘‘false alarm’’ probability dis-
cussed by Scargle (1982). For M independent trials, each corresponding to
a power spectrum analysis of independent normally distributed data, for which the
power spectrum is known to be exponential, Scargle shows that the probability
that the maximum of the M powers exceeds a given value S is given by

P ¼ 1� ð1� e�SÞM: ð5:1Þ

We find that, if we generalize this formula to

P ¼ 1� ð1� e�aSÞM; ð5:2Þ

we get a good fit to the results of the shuffle operation for the case m¼1yr�1 with
the values M¼ 10,000 and a¼ 0.23. This fit enables us to extend the results of
the shuffle test. From this extrapolation, we find that the shuffle test indicates
that the probability of obtaining a power of 102 or more is 10�6.19, i.e. 6.5 10�7.

We have repeated these calculations for m¼ 2yr�1. We show in Figure 15 the
log of the fraction (ordinate) of simulations for m ¼ 2yr�1 that have power in
excess of the value shown in the abscissa. We get a good fit to the results of the
shuffle operation for the case m¼ 2yr�1 with the values M¼ 13 and a¼ 0.425.

Fig. 15. Results of a test of 10,000 shuffles for m ¼ 2y�1 showing (thick line) the logarithm
of the fraction of trials that give a power exceeding a value shown in the abscissa. The thin
line is the curve computed from Equation 5.2. The asterisk shows the actual power
(S ¼ 75.5) for m ¼ 2y�1.
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Using this fit to extrapolate the curve, we find that the shuffle test indicates that
the probability of obtaining a power of 75.6 or more is 10�12.84, i.e. 1.45 10�13.

6. LST and ALST Patterns

It is interesting to examine the distribution of events with respect to LST,
which is related to HOD and HOY by Equation 4.5. The histogram is shown in
Figure 16. It appears to be fairly uniform except in the range 18 to 24 hours,
where there is a noticeable bump. The same data are shown as an error-bar
display in Figure 17, which indicates that the structure seen in Figure 16 is
indeed consistent through the four time blocks. We find that the chi-square
statistic computed from data in Figure 17 has the value 82.3. For 23 degrees of
freedom, the probability of obtaining this value by chance is only 1.4 10�8.
Hence the result of this test is significant, but not as significant as the result of
the running-wave test of Section 5. This is understandable, since the chi-square
test treats all ‘‘bins’’ as independent, whereas the Rayleigh-power approach takes
account of the phase relationship between bins.

We pointed out in Section 4 that if the LST modulation were due to
a convolution of the HOD and HOY modulations, the resulting modulation
should be approximately symmetric with respect to LST and ALST defined by
Equation 4.10. It is therefore interesting to compare with Figures 16 and 17 the
corresponding figures for ALST. These are shown as Figures 18 and 19. We see
that these are not at all like Figures 16 and 17. By contrast, Figures 18 and 19
appear to be featureless. Indeed, when we compute the chi-square statistic from
Equation 2.1, using data appearing in Figure 19, we find that v2¼ 8.59. For 23

Fig. 16. Histograms formed from LST for the four time blocks A–D.
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degrees of freedom, there is a probability of 0.997 of obtaining this value or
more. Hence the ALST histogram is consistent with no modulation, but the
degree to which this is true is somewhat surprising. This test indicates that the
LST modulation is most probably not due to the convolution of the HOD and
HOY modulations. This finding supports the results of Section 5.

Fig. 17. Mean and standard deviation of the number of events per hour of LST per block. The
horizontal line is the mean value.

Fig. 18. Histograms formed from ALST for the four time blocks A–D.
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7. Test Cases

In Section 4, we gave a theoretical argument as to why one would expect that
the powers of the forward and reverse waves would be similar if the oscillation
is due to an interplay of the time-of-day and the time-of-year distributions. Since
this is a crucial argument in support of the case for an LST effect, we now
reconsider this argument from a different point of view. We consider two
hypothetical catalogs: in one there is an LST effect, and in the other there is not.
We expect that the powers of the forward and reverse waves will be similar in
the second case and dissimilar in the first case. We retain the actual dates of
events, but we modify the time-of-day distributions.

Taking our lead from Figure 17, we consider a random distribution of LST
values that is flat over 80% of the phase-of-year range, but is larger by 30% in
the other 20% of the phase. We then compute the powers of the forward and
reverse waves by the method of Section 4. The result is shown in Figure 20. We
see that there is a strong peak for the forward wave at m¼ 1y�1, but there is no
significant peak for the reverse wave. The forward wave also has a small peak at
m ¼ 2y�1.

For comparison, taking our lead from Figure 9, we consider a random
distribution of HOY values that is flat over 70% of the phase-of-year range, but
is larger by 20% in the other 30% of the phase. We then compute the powers of
the forward and reverse waves by the method of Section 4. The result is shown
in Figure 21. We see that the forward and reverse waves have peaks of
comparable size at m ¼ 1y�1. There are also small peaks at m¼ 2y�1.

Fig. 19. Mean and standard deviation of the number of events per hour of ALST per block. The
horizontal line is the mean value.
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This comparison confirms our expectation that the combined effects of time-
of-day and time-of-year modulations leads to comparable powers in both the
forward and reverse waves, whereas an LST modulation leads to significant
power in only the forward wave.

Fig. 20. Running-wave power spectrum, forward waves shown with positive power, and reverse
waves shown with the negative of the power, for a model with an LST modulation.

Fig. 21. Running-wave power spectrum, forward waves shown with positive power, and reverse
waves shown with the negative of the power, for a model that has a significant HOY
modulation but no LST modulation.
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8. Discussion

It appears from our analysis that the rate of UFO events exhibits a significant
variation in terms of LST. There may be some mundane explanation of this
curious fact, but this explanation is not obvious. What seemed to be an obvious
interpretation, that the modulation is due to the combined effect of the time-of-
day and time-of-year modulations, seems to be ruled out by the running-wave
power spectrum analysis since this effect would be symmetric with respect to the
forward and reverse waves, which disagrees with our data analysis. The analysis
of Section 5 seems to show that the peaks at m ¼ 1y�1 and at m ¼ 2y�1 in the
running-wave analysis are highly significant. Nevertheless, the results of this test
cannot be taken at face value, since there are strong patterns in both the HOD
distribution and the HOY distribution. It will be important to examine the
catalog for systematic effects that might explain the apparent LST effect. It will
also be important to devise other significance tests that hopefully will be valid
even though there are strong patterns in the HOD and HOY distributions. It is
also clearly important to apply the same analysis to an independent catalog such
as the UFOCAT catalog.

If the effect does indeed have an astronomical origin, it points to a source with
right ascension in the range 21.5 þ/�1.5. Based on the analysis carried out to
date, the declination is unknown.

The analysis reported in this article appears to support the early findings of
Poher (1973) and of Poher and Vallee (1975), which were based on independent
and comparatively small catalogs.
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