Introduction to NOUFORS

What's New


Michel M. Deschamps - Director

Personal Sightings

Sightings Archive

Newspaper Archive


UFO Characteristics

UFO Physical Traces

Animal Mutilations

UFO Occupants

Crop Circles

Audio Clips


Majestic 12

and UFOs

Military Officers
and UFOs

Scientists and UFOs

Astronauts and UFOs

Pilots and UFOs

Cops and Saucers

Celebrities and UFOs

Who's Who in

Skeptics and Debunkers

Encyclopedia of Terminology and Abbreviations

Kidz' Korner




Robert H. Goddard
Robert Hutchings Goddard (October 5, 1882 – August 10, 1945) was an American professor, physicist, and inventor who is credited with creating and building the world's first liquid-fueled rocket, which he successfully launched on March 16, 1926. Goddard and his team launched 34 rockets between 1926 and 1941, achieving altitudes as high as 2.6 km (1.6 mi) and speeds as high as 885 km/h (550 mph).

Goddard's work as both theorist and engineer anticipated many of the developments that were to make spaceflight possible. Two inventions of Goddard's 214 patented — a multi-stage rocket (1914), and a liquid-fuel rocket (1914) — were important milestones toward spaceflight. His 1919 monograph A Method of Reaching Extreme Altitudes is considered one of the classic texts of 20th-century rocket science. Goddard successfully applied three-axis control, gyroscopes and steerable thrust to rockets, to effectively control their flight.

Although his work in the field was revolutionary, Goddard received little public support for his research. The press sometimes ridiculed his theories of spaceflight. As a result, he became protective of his privacy and his work. Years after his death, at the dawn of the Space Age, he came to be recognized as the founding father of modern rocketry. He not only recognized the potential of rockets for atmospheric research, ballistic missiles and space travel but was the first to scientifically study, design and construct the rockets needed to implement those ideas.

Early life and inspiration

Goddard was born in 1882 in Worcester, Massachusetts, to Nahum Danford Goddard (1859–1928) and Fannie Louise Hoyt (1864–1920). Robert was their only child to survive; a younger son, Richard Henry, was born with a spinal deformity, and died before his first birthday. His was an old New England family, and he inherited the traits of determination and mechanical ability. A country boy, he loved the outdoors and became an excellent marksman with a rifle.

Childhood experiments

With the introduction of electric power in American cities in the 1880s, the young Goddard became interested in science — specifically, engineering and technology. When his father showed him how to generate static electricity on the family's carpet, the five-year-old's imagination was fired. Robert experimented, believing he could jump higher if the zinc in batteries could somehow be charged with static electricity. Goddard halted the experiments after a warning from his mother that if he succeeded, he could "go sailing away and might not be able to come back." He experimented with chemicals and created a cloud of smoke and an explosion in the house. Goddard's father further encouraged Robert's scientific interest by providing him with a telescope, a microscope, and a subscription to Scientific American. Robert developed a fascination with flight, first with kites and then with balloons. He became a thorough diarist and documenter of his work — a skill that would greatly benefit his later career. These interests merged at age 16, when Goddard attempted to construct a balloon out of aluminum, shaping the raw metal in his home workshop. After nearly five weeks of methodical, documented efforts, he finally abandoned the project, remarking, "Failior [sic] crowns enterprise." However, the lesson of this failure did not restrain Goddard's growing determination and confidence in his work.

The cherry tree dream

He became interested in space when he read H. G. Wells' science fiction classic The War of the Worlds when he was 16 years old. His dedication to pursuing space flight became fixed on October 19, 1899. The 17-year-old Goddard climbed a cherry tree to cut off dead limbs. He was transfixed by the sky, and his imagination grew. He later wrote:

"On this day I climbed a tall cherry tree at the back of the barn … and as I looked toward the fields at the east, I imagined how wonderful it would be to make some device which had even the possibility of ascending to Mars, and how it would look on a small scale, if sent up from the meadow at my feet. I have several photographs of the tree, taken since, with the little ladder I made to climb it, leaning against it.

It seemed to me then that a weight whirling around a horizontal shaft, moving more rapidly above than below, could furnish lift by virtue of the greater centrifugal force at the top of the path.

I was a different boy when I descended the tree from when I ascended. Existence at last seemed very purposive."

For the rest of his life he observed October 19 as "Anniversary Day," a private commemoration of the day of his greatest inspiration.

Education and early studies

The young Goddard was a thin and frail boy, almost always in fragile health. He suffered from stomach problems, pleurisy, colds and bronchitis, and fell two years behind his classmates. He became a voracious reader, regularly visiting the local public library to borrow books on the physical sciences.

Aerodynamics and motion

Goddard's interest in aerodynamics led him to study some of Samuel Langley's scientific papers in the periodical Smithsonian. In these papers, Langley wrote that birds flap their wings with different force on each side to turn in the air. Inspired by these articles, the teenage Goddard watched swallows and chimney swifts from the porch of his home, noting how subtly the birds moved their wings to control their flight. He noted how remarkably the birds controlled their flight with their tail feathers, which he called the birds' equivalent of ailerons. He took exception to some of Langley's conclusions, and in 1901 wrote a letter to St. Nicholas magazine with his own ideas. The editor of St. Nicholas declined to publish Goddard's letter, remarking that birds fly with a certain amount of intelligence and that "machines will not act with such intelligence." Goddard disagreed, believing that a man could control a flying machine with his own intelligence.

Around this time, Goddard read Newton's Principia Mathematica, and found that Newton's Third Law of Motion applied to motion in space. He wrote later about his own tests of the Law:

"I began to realize that there might be something after all to Newton's Laws. The Third Law was accordingly tested, both with devices suspended by rubber bands and by devices on floats, in the little brook back of the barn, and the said law was verified conclusively. It made me realize that if a way to navigate space were to be discovered, or invented, it would be the result of a knowledge of physics and mathematics."


As his health improved, Goddard continued his formal schooling as an 19-year-old sophomore at South High School in Worcester in 1901. He excelled in his coursework, and his peers twice elected him class president. Making up for lost time, he studied books on mathematics, astronomy, mechanics and composition from the school library. At his graduation ceremony in 1904, he gave his class oration as valedictorian. In his speech, entitled "On Taking Things for Granted," Goddard included a section that would become emblematic of his life:

"[J]ust as in the sciences we have learned that we are too ignorant to safely pronounce anything impossible, so for the individual, since we cannot know just what are his limitations, we can hardly say with certainty that anything is necessarily within or beyond his grasp. Each must remember that no one can predict to what heights of wealth, fame, or usefulness he may rise until he has honestly endeavored, and he should derive courage from the fact that all sciences have been, at some time, in the same condition as he, and that it has often proved true that the dream of yesterday is the hope of today and the reality of tomorrow."

Goddard enrolled at Worcester Polytechnic Institute in 1904. He quickly impressed the head of the physics department, A. Wilmer Duff, with his thirst for knowledge, and Professor Duff took him on as a laboratory assistant and tutor. At WPI, Goddard joined the Sigma Alpha Epsilon fraternity, and began a long courtship with high school classmate Miriam Olmstead, an honor student who had graduated with him as salutatorian. Eventually, she and Goddard were engaged, but they drifted apart and ended the engagement around 1909.

Goddard received his B.S. degree in physics from Worcester Polytechnic in 1908, and after serving there for a year as an instructor in physics, he began his graduate studies at Clark University in Worcester in the fall of 1909. Goddard received his M.A. degree in physics from Clark University in 1910, and then stayed at Clark to complete his Ph.D. in physics in 1911. He spent another year at Clark as an honorary fellow in physics, and in 1912, he accepted a research fellowship at Princeton University's Palmer Physical Laboratory.

First scientific writings

The high school student summed up his ideas on space travel in a proposed article, "The Navigation of Space," which he submitted to the Popular Science News. The journal's editor returned it, saying that they could not use it "in the near future."

While still an undergraduate, Goddard wrote a paper proposing a method for balancing aeroplanes using gyro-stabilization. He submitted the idea to Scientific American, which published the paper in 1907. Goddard later wrote in his diaries that he believed his paper was the first proposal of a way to automatically stabilize aircraft in flight. His proposal came around the same time as other scientists were making breakthroughs in developing functional gyroscopes.

His first writing on the possibility of a liquid-fueled rocket came on February 2, 1909. Goddard had begun to study ways of increasing a rocket's efficiency using methods differing from conventional, powder rockets. He wrote in his journal about using liquid hydrogen as a fuel with liquid oxygen as the oxidizer. He believed that 50 percent efficiency could be achieved with these liquid propellants.

First patents

In the decades around 1910, radio was a new technology, a fertile field for innovation. In 1911, while working at Clark University, Goddard investigated the effects of radio waves on insulators. In order to generate radio-frequency power, he invented a vacuum tube that operated like a cathode-ray tube. U.S. Patent 1,159,209 was issued on November 2, 1915. This was the first use of a vacuum tube to amplify a signal, preceding even Lee de Forest's claim.

By 1913 he had in his spare time, using calculus, developed the mathematics which allowed him to calculate the position and velocity of a rocket in vertical flight, given the weight of the rocket and weight of the propellant and the velocity of the exhaust gases. His first goal was to build a sounding rocket with which to study the atmosphere. He was very reluctant to admit that his ultimate goal was in fact to develop a vehicle for flights into space, since most scientists, especially in the United States, did not consider such a goal to be a realistic or practical scientific pursuit, nor was the public yet ready to seriously consider such ideas. Later, in 1933, Goddard said that "In no case must we allow ourselves to be deterred from the achievement of space travel, test by test and step by step, until one day we succeed, cost what it may."

Unfortunately, in early 1913, Goddard became seriously ill with tuberculosis, and had to leave his position at Princeton. He then returned to Worcester, where he began a prolonged process of recovery. His doctors did not expect him to live, but Goddard's dreams of spaceflight helped him persevere; he was also worried that no one would otherwise be able to decipher the handwriting in his notebooks. He spent time outside in the fresh air, walked for exercise and gradually improved.

It was during this period of recuperation, however, that Goddard began to produce some of his most important work. As his symptoms subsided, he allowed himself to work an hour per day with his notes made at Princeton. In the technological and manufacturing of Worcester, patents were considered essential, not only to protect original work, but as documentation of first discovery. He began to see the importance of his ideas as intellectual property, and thus began to secure those ideas before someone else did—and he would have to pay to use them. In May 1913, he wrote concerning his first rocket patent applications. His father brought them to a patent firm in Worcester, who helped him to refine his ideas for consideration. Goddard's first patent application was submitted in October 1913.

In 1914, his first two landmark patents were accepted and registered. The first, U.S. Patent 1,102,653, described a multi-stage rocket. The second, U.S. Patent 1,103,503, described a rocket fueled with gasoline and liquid nitrous oxide. The two patents would eventually become important milestones in the history of rocketry. Overall, he published 214 patents, some posthumously by his wife.

Mid-to-late 1910s

In the fall of 1914, Goddard's health had improved, and he accepted a part-time position as an instructor and research fellow at Clark University.

His position at Clark allowed him to further his rocketry research. He ordered numerous supplies that could be used to build rocket prototypes for launch, and spent much of 1915 in preparation for his first tests.

Goddard's first test launch of a powder rocket came on an early evening in 1915 following his daytime classes at Clark. The launch was loud and bright enough to arouse the alarm of the campus janitor, and Goddard had to reassure him that his experiments, while being serious study, were also quite harmless. After this incident, Goddard took his experiments inside the physics lab, in order to limit any disturbance.

At the Clark physics lab, Goddard conducted static tests of powder rockets to measure their thrust efficiency. He found his earlier estimates to be verified; powder rockets were converting only about 2 percent of their fuel into thrust. At this point, he applied de Laval nozzles, which were generally used with steam turbine engines, and these greatly improved thrust efficiency. By mid-summer of 1915, Goddard had obtained an average thrust efficiency of 40 percent with nozzle velocities of 2051 meters per second. Connecting a combustion chamber full of gunpowder to various converging-diverging expansion nozzles, Goddard was able in static tests to achieve engine efficiencies of more than 63% and exhaust velocities of over 7000 feet (2134 meters) per second. Few would recognize it at the time, but this little engine was a major breakthrough. These experiments suggested that rockets could be made powerful enough to escape Earth and travel into space. This engine, and subsequent experiments sponsored by the Smithsonian Institution, were the beginning of modern rocketry and, ultimately, space exploration. Goddard realized, however, that it would take the more efficient liquid propellants to reach space.

Later that year, Goddard designed an elaborate experiment at the Clark physics lab and proved that a rocket would perform in a vacuum such as that in space. He believed it would, but many other scientists were not yet convinced. His experiment demonstrated that a rocket's performance actually decreases under atmospheric pressure.

From 1916 to 1917, Goddard built and tested experimental ion thrusters, which he thought might be used for propulsion in the near-vacuum conditions of outer space. The small glass engines he built were tested at atmospheric pressure, where they generated a stream of ionized air.

Smithsonian Institution sponsorship

By 1916, the cost of Goddard's rocket research had become too great for his modest teaching salary to bear. He began to solicit potential sponsors for financial assistance, beginning with the Smithsonian Institution, the National Geographic Society, and the Aero Club of America.

In his letter to the Smithsonian in September 1916, Goddard claimed he had achieved a 63% thrust efficiency and a nozzle velocity of almost 2438 meters per second. With these performance standards, he believed a rocket could lift a weight of 0.45 kg to a height of 373 km with an initial launch weight of only 40.64 kg.

The Smithsonian was interested, and asked Goddard to elaborate upon his initial inquiry. Goddard responded with a detailed manuscript he had already prepared, entitled A Method of Reaching Extreme Altitudes.

In January 1917, the Smithsonian agreed to provide Goddard with a five-year grant totaling 5000 USD. Afterward, Clark was able to contribute 3500 USD and the use of their physics lab to the project. Worcester Polytechnic Institute also allowed him to use its abandoned Magnetics Laboratory on the edge of campus during this time, as a safe place for testing.

It wasn't until two years later, at the insistence of Dr. Arthur G. Webster, the world-renowned head of Clark's physics department, that Goddard arranged for the Smithsonian to publish his work.

While at Clark University, Goddard did research into solar power using a dish to concentrate the sun's rays on a machined piece of quartz that was sprayed with mercury which then heated water and drove a generator at the dish. Goddard believed his invention had overcome all the obstacles that had previously defeated other scientists and inventors, and he had his findings published in the November 1929 issue of Popular Science.

Goddard's military rocket

Not all of Goddard's early work was geared towards space travel. As the United States entered World War I in 1917, the country's universities began to lend their services to the war effort. Goddard believed his rocket research could be applied to many different military applications, including mobile artillery, field weapons and naval torpedoes. He made proposals to the Navy and Army. No record exists of any interest by the Navy to Goddard's inquiry. However, Army Ordnance was quite interested, and Goddard met several times with Army personnel.

During this time, Goddard was also contacted by a civilian industrialist in Worcester about the possibility of manufacturing rockets for the military. However, as the businessman's enthusiasm grew, so did Goddard's suspicion. Talks eventually broke down as Goddard began to fear his work might be appropriated by the business. However, an Army Signal Corps officer tried to make Goddard cooperate, but he was called off by General George Squier of the Signal Corps who had been contacted by Secretary of the Smithsonian Institution, Charles Walcott. Goddard became leery of working with corporations and was careful to secure patents to "protect his ideas." These events led to the Signal Corps sponsoring Goddard's work during World War I.

Goddard proposed to the Army an idea for a tube-based rocket launcher as a light infantry weapon. The launcher concept became the precursor to the bazooka. The rocket-powered recoil-free weapon was the brainchild of Dr. Goddard as a side project (under Army contract) of his work on rocket propulsion. Goddard, during his tenure at Clark University, and working at Mount Wilson Observatory for security reasons, designed a tube-fired rocket for military use during World War I. He and his co-worker, Dr. Clarence Hickman, successfully demonstrated his rocket to the U.S. Army Signal Corps at Aberdeen Proving Ground, Maryland, on November 6, 1918, using two music stands for a launch platform, but the Compiègne Armistice was signed only five days later, and further development was discontinued as World War I ended.

The delay in the development of the bazooka and other weapons was a result of Goddard's serious bout with tuberculosis—the long recovery required. Goddard continued to be a part-time consultant to the U.S. Government at Indian Head, Maryland, until 1923, but his focus had turned to other research involving rocket propulsion, including work with liquid fuels and liquid oxygen.

Later, the former Clark University researcher, Dr. Clarence Hickman, and Army officers Col. Leslie Skinner and Lt. Edward Uhl continued Goddard's work on the bazooka. A shaped-charge warhead was attached to the rocket, leading to the tank-killing weapon used in World War II and to many other powerful rocket weapons.

A Method of Reaching Extreme Altitudes

Pushed to publish

In 1919, Goddard thought that it would be premature to disclose the results of his experiments, that his engine was not sufficiently developed. Dr. Webster realized that Goddard had accomplished a good deal of fine work and insisted that Goddard publish his progress so far or he would take care of it himself. So Goddard asked the Smithsonian Institution if it would publish the report he had submitted in late 1916.

In late 1919, the Smithsonian published Goddard's groundbreaking work, A Method of Reaching Extreme Altitudes. The report describes Goddard's mathematical theories of rocket flight, his experiments with solid-fuel rockets, and the possibilities he saw of exploring the Earth's atmosphere and beyond. Along with Konstantin Tsiolkovsky's earlier work, The Exploration of Cosmic Space by Means of Reaction Devices. 1903. (which was not widely disseminated), Goddard's little book is regarded as one of the pioneering works of the science of rocketry, and 1750 copies were distributed worldwide.

Goddard described extensive experiments with solid-fuel rocket engines burning high grade nitrocellulose smokeless powder. A critical breakthrough was the use of the steam turbine nozzle invented by the Swedish inventor Gustaf de Laval. The de Laval nozzle allows the most efficient (isentropic) conversion of the energy of hot gases into forward motion. By means of this nozzle, Goddard increased the efficiency of his rocket engines from 2 percent to 64 percent and obtained supersonic exhaust velocities of over Mach 7.

Though most of this work dealt with the theoretical and experimental relations between propellant, rocket mass, thrust, and velocity, a final section, entitled "Calculation of minimum mass required to raise one pound to an 'infinite' altitude", discussed the possible uses of rockets, not only to reach the upper atmosphere, but to escape from Earth's gravitation altogether. He determined that a rocket with an effective exhaust velocity (see Specific impulse) of 7000 feet per second and an initial weight of 602 pounds would be able to send a one-pound payload to an infinite height. Included as a thought experiment was the idea of launching a rocket to the moon and igniting a mass of flash powder on its surface, so as to be visible through a telescope. He discussed the matter seriously, down to an estimate of the amount of powder required; Goddard's conclusion was that a rocket with starting mass of 3.21 tons could produce a flash "just visible" from Earth, assuming a final payload weight of 10.7 pounds.

Goddard eschewed publicity, because he did not have time to reply to criticism of his work, and his imaginative ideas about space travel were shared only with private groups he trusted. He did, though, publish and talk about the rocket principle and sounding rockets, since these subjects were not too "far out." In a letter to the Smithsonian, dated March 1920, he discussed: photographing the Moon and planets from rocket-powered fly-by probes, sending messages to distant civilizations on inscribed metal plates, the use of solar energy in space, and the idea of high-velocity ion propulsion. In that same letter, Goddard clearly describes the concept of the ablative heat shield, suggesting the landing apparatus be covered with "layers of a very infusible hard substance with layers of a poor heat conductor between" designed to erode in the same way as the surface of a meteor.

Publicity and criticism

The publication of Goddard's document gained him national attention from U.S. newspapers, most of it negative. Although Goddard's discussion of targeting the moon was only a small part of the work as a whole and was intended as an illustration of the possibilities rather than a declaration of intent, the papers sensationalized his ideas to the point of misrepresentation and ridicule. Even the Smithsonian had to abstain from publicity because of the amount of ridiculous correspondence received from the general public. David Lasser, who co-founded the American Rocket Society, wrote in 1931 that Goddard was subjected in the press to the "most violent attacks."

On January 12, 1920, a front-page story in The New York Times, "Believes Rocket Can Reach Moon", reported a Smithsonian press release about a "multiple-charge, high-efficiency rocket." The chief application envisaged was "the possibility of sending recording apparatus to moderate and extreme altitudes within the Earth's atmosphere", the advantage over balloon-carried instruments being ease of recovery, since "the new rocket apparatus would go straight up and come straight down." But it also mentioned a proposal "to [send] to the dark part of the new moon a sufficiently large amount of the most brilliant flash powder which, in being ignited on impact, would be plainly visible in a powerful telescope. This would be the only way of proving that the rocket had really left the attraction of the earth, as the apparatus would never come back, once it had escaped that attraction."

The New York Times editorial

On January 13, the day after its front-page story about Goddard's rocket, an unsigned New York Times editorial, in a section entitled "Topics of the Times", scoffed at the proposal. The article, which bore the title "A Severe Strain on Credulity", began with apparent approval, but soon went on to cast serious doubt:

As a method of sending a missile to the higher, and even highest, part of the earth's atmospheric envelope, Professor Goddard's multiple-charge rocket is a practicable, and therefore promising device. Such a rocket, too, might carry self-recording instruments, to be released at the limit of its flight, and conceivable parachutes would bring them safely to the ground. It is not obvious, however, that the instruments would return to the point of departure; indeed, it is obvious that they would not, for parachutes drift exactly as balloons do. And the rocket, or what was left of it after the last explosion, would need to be aimed with amazing skill, and in a dead calm, to fall on the spot whence it started.

But that is a slight inconvenience, at least from the scientific standpoint, though it might be serious enough from that of the always innocent bystander a few hundred or thousand yards from the firing line.

The article pressed further on Goddard's proposal to launch rockets beyond the atmosphere:

[A]fter the rocket quits our air and really starts on its longer journey, its flight would be neither accelerated nor maintained by the explosion of the charges it then might have left. To claim that it would be is to deny a fundamental law of dynamics, and only Dr. Einstein and his chosen dozen, so few and fit, are licensed to do that.

Finally, in the follow-on section, "His plan is not original," the writer assumed, wrongly, that Goddard's understanding of Newton's laws was flawed:

That Professor Goddard, with his "chair" in Clark College and the countenancing of the Smithsonian Institution, does not know the relation of action and reaction, and of the need to have something better than a vacuum against which to react—to say that would be absurd. Of course he only seems to lack the knowledge ladled out daily in high schools.

Unbeknownst to the Times, thrust is possible in a vacuum.


A week after the New York Times editorial, Goddard released a signed statement to the Associated Press, attempting to restore reason to what had become a sensational story:

Too much attention has been concentrated on the proposed flash pow[d]er experiment, and too little on the exploration of the atmosphere. . . . Whatever interesting possibilities there may be of the method that has been proposed, other than the purpose for which it was intended, no one of them could be undertaken without first exploring the atmosphere.

In 1924, Goddard published an article, "How my speed rocket can propel itself in vacuum," in Popular Science, in which he explained the physics and gave details of the vacuum experiments he had performed to prove the theory. However, even so, after one of Goddard's experiments in 1929, a local Worcester newspaper carried the mocking headline "Moon rocket misses target by 238,7991?2 miles."

As a result of harsh criticism from the media and from other scientists, and understanding better than most the military applications for which foreign powers could use this technology, Goddard became increasingly suspicious of others and often worked alone, except during the two World Wars, which limited the impact of much of his work. Another limiting factor was the lack of support from the American government, military and academia as to the study of the atmosphere, near space and military applications. As Germany became ever more war-like, he refused to communicate with German rocket experimenters, though he received more and more correspondence from them.

'A Correction'

Forty-nine years after its editorial mocking Goddard, on July 17, 1969 — the day after the launch of Apollo 11 — The New York Times published a short item under the headline "A Correction." The three-paragraph statement summarized its 1920 editorial, and concluded:

Further investigation and experimentation have confirmed the findings of Isaac Newton in the 17th Century and it is now definitely established that a rocket can function in a vacuum as well as in an atmosphere. The Times regrets the error.

First liquid-fueled flight

First static tests

Goddard began experimenting with liquid oxidizer, liquid fuel rockets in September 1921, and successfully tested the first liquid propellant engine in November 1923. It had a cylindrical combustion chamber, using impinging jets to mix and atomize liquid oxygen and gasoline.

In 1924–25, Goddard had problems developing a high-pressure piston pump to send fuel to the combustion chamber. He wanted to scale up the experiments, but his funding would not allow such growth. He decided to forgo the pumps and use a pressurized fuel feed system applying pressure to the fuel tank from a tank of inert gas, a technique used today.

On December 6, 1925, he tested the simpler pressure feed system. He conducted a static test on the firing stand at the Clark University physics laboratory. The engine successfully lifted its own weight in a 27-second test in the static rack. It was a major success for Goddard, proving that a liquid fuel rocket was possible. The test moved Goddard an important step closer to launching a rocket with liquid fuel.

Goddard conducted an additional test in December, and two more in January 1926. After that, he began preparing for a possible launch of the rocket system.

First flight

Goddard launched the first liquid-fueled (gasoline and liquid oxygen) rocket on March 16, 1926, in Auburn, Massachusetts. Present at the launch were his crew chief, Henry Sachs, Esther Goddard, and Percy Roope, who was Clark's assistant professor in the physics department. Goddard's diary entry of the event was notable for its understatement:

March 16. Went to Auburn with S[achs] in am. E[sther] and Mr. Roope came out at 1 p.m. Tried rocket at 2.30. It rose 41 feet & went 184 feet, in 2.5 secs., after the lower half of the nozzle burned off. Brought materials to lab....

His diary entry the next day elaborated:

March 17, 1926. The first flight with a rocket using liquid propellants was made yesterday at Aunt Effie's farm in Auburn.... Even though the release was pulled, the rocket did not rise at first, but the flame came out, and there was a steady roar. After a number of seconds it rose, slowly until it cleared the frame, and then at express train speed, curving over to the left, and striking the ice and snow, still going at a rapid rate.

Robert Goddard, bundled against the cold New England weather of
March 16, 1926, holds the launching frame of his most
notable invention — the first liquid-fueled rocket.

The rocket, which was later dubbed "Nell", rose just 41 feet during a 2.5-second flight that ended 184 feet away in a cabbage field, but it was an important demonstration that liquid propellants were possible. The launch site is now a National Historic Landmark, the Goddard Rocket Launching Site.

Viewers familiar with more modern rocket designs may find it difficult to distinguish the rocket from its launching apparatus in the well-known picture of "Nell". The complete rocket is significantly taller than Goddard, but does not include the pyramidal support structure which he is grasping. The rocket's combustion chamber is the small cylinder at the top; the nozzle is visible beneath it. The fuel tank, which is also part of the rocket, is the larger cylinder opposite Goddard's torso. The fuel tank is directly beneath the nozzle, and is protected from the motor's exhaust by an asbestos cone. Asbestos-wrapped aluminum tubes connect the motor to the tanks, providing both support and fuel transport. This layout is no longer used, since the experiment showed that this was no more stable than placing the rocket engine at the base. By May, after a series of modifications to simplify the plumbing, the engine was placed in the now classic position, at the lower end of the rocket.

Goddard determined early that fins alone were not sufficient to stabilize the rocket in flight and keep it on the desired trajectory in the face of winds aloft and other perturbing forces. He added movable vanes in the exhaust, controlled by a gyroscope, to control and steer his rocket. (The Germans used this technique in their V-2.) He also introduced the more efficient swiveling engine in several rockets, basically the method used to steer large liquid-propellant missiles and launchers today.

Lindbergh and Goddard

After a launch of one of Goddard's rockets in July 1929 again gained the attention of the newspapers, Charles Lindbergh learned of his work in a New York Times article. At the time, Lindbergh had begun to wonder what would become of aviation (even space flight) in the distant future and had settled on jet propulsion and rocket flight as a probable next step. After checking with the Massachusetts Institute of Technology (MIT) and being assured that Goddard was a bona fide physicist and not a crackpot, he phoned Goddard in November 1929. Professor Goddard met the aviator soon after, in his office at Clark University. Upon meeting Goddard, Lindbergh was immediately impressed by his research, and Goddard was similarly impressed by the flier's interest. He discussed his work openly with Lindbergh, forming an alliance that would last for the rest of his life. While having long since become reticent to share his ideas, Goddard showed complete openness with those few who shared his dream, and whom he felt he could trust.

By late 1929, Goddard had been attracting additional notoriety with each rocket launch. He was finding it increasingly difficult to conduct his research without unwanted distractions. Lindbergh discussed finding additional financing for Goddard's work, and put his famous name to work for Goddard. Into 1930, Lindbergh made several proposals to industry and private investors for funding, which proved all but impossible to find following the recent U.S. stock market crash in October 1929.

Guggenheim sponsorship

In the spring of 1930, Lindbergh finally found an ally in the Guggenheim family. Financier Daniel Guggenheim agreed to fund Goddard's research over the next four years for a total of $100,000 (~$1.7 million today). The Guggenheim family, especially Harry Guggenheim, would continue to support Goddard's work in the years to come. The Goddards soon moved to Roswell, New Mexico.

Because of the military potential of the rocket, Goddard, Lindbergh, Harry Guggenheim, the Smithsonian Institution and others tried in 1940, before the U.S. entered World War II, to convince the Army and Navy of its value. Goddard's services were offered, but there was no interest, initially. Two young, imaginative officers eventually got the services to attempt to contract with Goddard just prior to the war. The Navy beat the Army to the punch and secured his services to build liquid-fueled rockets for jet-assisted take-off (JATO) of aircraft. These rockets were the precursors to some of the large rocket engines that launched the space age.

Lack of vision in the United States

In general, there was a lack of vision and serious interest in the United States concerning the potential of rocketry, especially in Washington. Although the Weather Bureau, was interested beginning in 1929 in Goddard's rocket for atmospheric research, the Bureau could not secure governmental funding. Between the World Wars, the Guggenheim Foundation was the main source of funding for Goddard's research. Goddard's liquid-fueled rocket was "neglected" by his country, according to aerospace historian Eugene Emme, but was noticed and advanced by other nations, especially the Germans. Interestingly, Goddard showed remarkable prescience in 1923 in a letter to the Smithsonian. He knew that the Germans were very interested in rocketry and said he "would not be surprised if the research would become something in the nature of a race" and he wondered how soon the European "theorists" would begin to build rockets.

In 1936, the U.S. military attache in Berlin asked Charles Lindbergh to visit Germany and learn what he could of their progress in aviation. Although the Luftwaffe showed him their factories and were open concerning their growing airpower, they were silent on the subject of rocketry. When Lindbergh told Goddard of this behavior, Goddard said, "Yes, they must have plans for the rocket. When will our own people in Washington listen to reason?"

Most of the U.S.'s largest universities were also slow to realize rocketry's potential. Just before the war, the head of the aeronautics department at the Massachusetts Institute of Technology (MIT), at a meeting held by the Army Air Corps to discuss project funding, said that (Cal Tech) "can take the Buck Rogers Job [rocket research]." In 1941, Goddard tried to recruit an engineer for his team from MIT but couldn't find one who was interested. There were some exceptions: MIT was at least teaching basic rocketry, and Cal Tech had courses in rocketry and aerodynamics. After the war, Dr. Jerome Hunsaker of MIT, having studied Goddard's patents, stated that "Every liquid-fuel rocket that flies is a Goddard rocket."

While away in Roswell, Goddard was still head of the physics department at Clark University, and Clark deserves credit for allowing him to devote most of his time to research. Likewise the University of California Los Angeles (UCLA) permitted astronomer Samuel Herrick to pursue research in space vehicle guidance and control, and shortly after the war to teach courses in spacecraft guidance and orbit determination. Herrick began corresponding with Goddard in 1931 and asked if he should work in this new field, which he named astrodynamics. Herrick said that Goddard had the vision to advise and encourage him in his use of celestial mechanics "to anticipate the basic problem of space navigation."

Roswell, New Mexico

Fruitful years 1930-1941

With new financial backing, Goddard eventually relocated to Roswell, New Mexico, in summer of 1930,[58]:46 where he worked with his team of technicians in near-isolation and relative secrecy for years. He had consulted a meteorologist as to the best area to do his work and Roswell seemed ideal. Here they would not endanger anyone, would not be bothered by the curious, and experienced a more moderate climate (which was also better for Goddard's health). The locals valued personal privacy, knew Goddard desired his, and when travelers asked where Goddard's facilities were located, they would likely be misdirected.

By September 1931, his rockets had the now familiar appearance of a smooth casing with tail-fins. He began experimenting with gyroscopic guidance, and made a flight test of such a system in April 1932. A gyroscope mounted on gimbals electrically controlled steering vanes in the exhaust, similar to the system used by the German V-2 over 10 years later. Though the rocket crashed after a short ascent, the guidance system had worked, and Goddard considered the test a success.

A temporary loss of funding, as a result of the depression, from the Guggenheims forced Goddard in spring of 1932 to return to Clark University until fall of 1934, when funding resumed. Upon his return to Roswell, he began work on his A series of rockets, 4 to 4.5 meters long, and powered by gasoline and liquid oxygen pressurized with nitrogen. The gyroscopic control system was housed in the middle of the rocket, between the propellant tanks.

The A-4 used a simpler pendulum system for guidance, as the gyroscopic system was being repaired. On March 8, 1935 it flew up to 1,000 feet, then turned into the wind and, Goddard reported, "roared in a powerful descent across the prairie, at close to, or at, the speed of sound." On March 28, 1935, the A-5 successfully flew vertically to an altitude of 1.46 kilometers (0.91 mi; 4,800 ft) using his gyroscopic guidance system. It then turned to a nearly horizontal path, flew 13,000 feet and achieved a maximum speed of 550 miles per hour. Goddard was elated because the guidance system kept the rocket on a vertical path so well.

Charles Lindbergh took this picture of Robert H. Goddard's rocket, when he peered down
the launching tower on September 23, 1935, in Roswell, New Mexico.

In 1936–1939, Goddard began work on the K and L series rockets, which were much more massive and designed to reach very high altitude. The K series consisted of static bench tests of a more powerful engine, achieving a thrust of 624 pounds in February 1936. This work was plagued by trouble with engine burn-through. In 1923, Goddard had built a regeneratively cooled engine, which circulated liquid oxygen around the outside of the combustion chamber, but he deemed the idea too complicated. He then used a curtain cooling method, which involved spraying excess gasoline, which evaporated, around the inside wall of the combustion chamber, but this scheme did not work well, and the larger rockets failed. Returning to a smaller design, the L-13 reached an altitude of 2.7 kilometers (1.7 mi; 8,900 ft), the highest of any of Goddard's rockets. Weight was reduced by using thin-walled fuel tanks wound with high-tensile-strength wire.

Goddard towing a rocket in Roswell

From 1940 to 1941, work was done on the P series of rockets, which used propellant turbopumps (also powered by gasoline and liquid oxygen). The lightweight pumps produced higher propellant pressures, permitting a more powerful engine (greater thrust) and and a lighter structure (lighter tanks and no pressurization tank), but two launches both ended in crashes after reaching an altitude of only a few hundred feet. The turbopumps worked well, however, and Goddard was pleased.

When Goddard mentioned the need for turbopumps, Harry Guggenheim suggested that he contact pump manufacturers to aid him. None were interested, as the cost of development of these miniature pumps was prohibitive. Goddard's team was therefore left on its own and from September 1938 to June 1940 designed and tested the small turbopumps and gas generators to operate the turbines. Esther later said that the pump tests were "the most trying and disheartening phase of the research."

Goddard was able to flight-test many of his rockets, but many resulted in what the uninitiated would call failures, usually resulting from engine malfunction or loss of control. Goddard did not consider them failures, however, because he felt that he always learned something from a test. Most of his work involved static tests, which are a standard procedure today, before a flight test.

Analysis of results

As an instrument for reaching extreme altitudes, Goddard's rockets were not very successful; they did not achieve an altitude greater than 2.7 km in 1937, while a balloon sonde had already reached 35 km in 1921. By contrast, German rocket scientists had achieved an altitude of 2.4 km with the A-2 rocket in 1934, 8 km by 1939 with the A-5, and 196 km in 1942 with the A-4 (V-2) launched vertically, reaching the outer limits of the atmosphere and into space.[61]:221

Goddard's pace was slower than the Germans' because he did not have the resources they did. If reaching high altitudes had been his only goal, he could have assembled solid fuel engines together in a simpler multi-stage rocket and beat the Germans to space. But he was trying to perfect his liquid fuel engine and subsystems such as guidance and control so that his rocket could achieve high altitudes without tumbling in the rare atmosphere, providing a stable vehicle for the experiments it would eventually carry. He had built the necessary turbopumps and was on the verge of building larger, more reliable rockets to reach extreme altitudes when World War II intervened and changed the path of American history. He hoped to return to his experiments in Roswell after the war.

Although Goddard had brought his work in rocketry to the attention of the United States Army, between World Wars, he was rebuffed, since the Army largely failed to grasp the military application of large rockets and said there was no money for new experimental weapons. German military intelligence, by contrast, had paid attention to Goddard's work. The Goddards noticed the some mail had been opened, and some mailed reports had gone missing. An accredited military attaché to the US, Friedrich von Boetticher, sent a four-page report to the Abwehr in 1936, and the spy Gustav Guellich sent a mixture of facts and made-up information, claiming to have visited Roswell and witnessed a launch. The Abwehr was very interested and responded with more questions about Goddard's work. Guellich's reports did include information about fuel mixtures and the important concept of fuel-curtain cooling, but thereafter the Germans received very little information about Goddard.

The Soviet KGB had a spy in the U.S. Navy Bureau of Aeronautics. In 1935, she gave them a report Goddard had written for the Navy in 1933. It contained results of tests and flights and suggestions for military uses of his rockets. The Soviets considered this to be very valuable information. It provided few design details, but gave the them the direction and progress of Goddard's work.

"Don't you know about your own rocket pioneer? Dr. Goddard was ahead of us all."
Wernher von Braun, when asked about Goddard's work following World War II

Annapolis, Maryland

Navy Lieutenant Charles F. Fischer, who had visited Goddard in Roswell earlier and gained his confidence, believed Goddard was doing valuable work and was able to convince the Bureau of Aeronautics in September 1941 that Goddard could build the JATO unit the Navy desired. While still in Roswell, and before the Navy contract took effect, Goddard began in September to apply his technology to build a variable-thrust engine to be attached to a PBY seaplane. By May 1942, he had a unit that could meet the Navy's requirements and be able to launch a heavily loaded aircraft from a short runway. In February, he received part of a PBY with bullet holes apparently acquired in the Pearl Harbor attack. Goddard wrote to Guggenheim that "I can think of nothing that would give me greater satisfaction than to have it contribute to the inevitable retaliation."

In April, Fischer notified Goddard that the Navy wanted to do all its rocket work at the Engineering Experiment Station at Annapolis. Esther, worried that a move to the climate of Maryland would cause Robert's health to deteriorate faster, objected. But the patriotic Goddard replied, "Esther, don't you know there's a war on?" Fischer also questioned the move, as Goddard could work just as well in Roswell. Goddard simply answered, "I was wondering when you would ask me." Fischer had wanted to offer him something bigger -- a long-range missile -- but JATO was all he could manage, hoping for a greater project later. It was a case of a square peg in a round hole, according to a disappointed Goddard.

Goddard and his team had already been in Annapolis a month and had tested his constant-thrust JATO engine when he received a Navy telegram, forwarded from Roswell, ordering him Annapolis. Lt. Fischer asked for a crash effort. By August his engine was producing 800 lbs of thrust for 20 seconds, and Fischer was anxious to try it on a PBY. On the sixth test run, with all bugs worked out, the PBY, piloted by Fischer, was pushed into the air from the Severn River. Fischer landed and prepared to launch again. Goddard had wanted to check the unit, but radio contact with the PBY had been lost. On the seventh try, the engine caught fire. The plane was 150 feet up when flight was aborted. Because Goddard had installed a safety feature at the last minute, there was no explosion and no lives were lost. The problem's cause was traced to hasty installation and rough handling. Cheaper, safer solid fuel JATO engines were eventually selected by the armed forces. An engineer later said, "Putting [Goddard's] rocket on a seaplane was like hitching an eagle to a plow."


In the spring of 1945, Goddard saw a captured German V-2 ballistic missile, in the naval laboratory in Annapolis, Maryland, where Goddard had been working under contract. The unlaunched rocket that had been captured by the US Army from the Mittelwerk factory in the Harz mountains, and samples began to be shipped by Special Mission V-2 on 22 May 1945.

After a thorough inspection, Goddard was convinced that the Germans had "stolen" his work. Though the design details were not exactly the same, the basic design of the V-2 was similar to one of Goddard's rockets. The V-2, however, was technically far more advanced than the most successful of the rockets designed and tested by Goddard. The Peenemünde rocket group led by Wernher von Braun may have benefited from the pre-1939 contacts to a limited extent, but had also started from the work of their own space pioneer, Hermann Oberth; they also had the benefit of intensive state funding, large-scale production facilities (using slave labor), and repeated flight-testing that allowed them to refine their designs. Oberth was a theorist and had never built a rocket or a working engine.

Nevertheless, in 1963, von Braun, reflecting on the history of rocketry, said of Goddard: "His rockets ... may have been rather crude by present-day standards, but they blazed the trail and incorporated many features used in our most modern rockets and space vehicles". He once recalled that "Goddard's experiments in liquid fuel saved us years of work, and enabled us to perfect the V-2 years before it would have been possible."

Three features developed by Goddard appeared in the V-2: (1) turbopumps were used to inject fuel into the combustion chamber; (2) gyroscopically controlled vanes in the nozzle stablized the rocket until external vanes in the air could do so; and (3) excess alcohol was fed in around the combustion chamber walls, so that a blanket of evaporating gas protected the engine walls from the combustion heat.

Though not by plan, Goddard's work on liquid-fueled rockets nevertheless played a part in bringing World War II to an earlier end. The Germans had been watching Goddard's progress before the war and became convinced that large, liquid fuel rockets were feasible. General Dornberger, head of the V-2 project, used the idea that they were in a race with the U.S. and that Goddard had "disappeared" (to work with the Navy) to obtain high priority from Hitler. It was a strategic mistake, however, to expend an estimated one-half billion war-era-dollars (not counting slave labor) for a terror weapon that did not create the fear desired and lacked the accuracy to be very effective against military targets. Resources could have been better used on existing, or new more effective, weapons.

Goddard's secrecy

Goddard avoided sharing details of his work with other scientists, and preferred to work alone with his technicians. Frank Malina, who was then studying rocketry at the California Institute of Technology, visited Goddard in August 1936. Goddard hesitated to discuss any of his research, other than that which had already been published in Liquid-Propellant Rocket Development. Theodore von Kármán, Malina's mentor at the time, was unhappy with Goddard's attitude and later wrote, "Naturally we at Caltech wanted as much information as we could get from Goddard for our mutual benefit. But Goddard believed in secrecy.... The trouble with secrecy is that one can easily go in the wrong direction and never know it." However, at an earlier point von Kármán said that Malina was "highly enthusiastic" after his visit and that Caltech made changes to their liquid-propellant rocket, based on Goddard's work and patents. Malina remembered his visit as friendly and that he saw all but a few components in Goddard's shop.

Goddard's concerns about secrecy led to criticism for failure to cooperate with other scientists and engineers. His approach at that time was that independent development of his ideas without interference would bring quicker results even though he received less technical support. George Sutton, who became a rocket scientist working with von Braun's team in the late 1940s, said that he and his fellow workers had not heard of Goddard or his contributions, and they would have saved time to have had details of his work. Sutton admits that it may have been their fault for not looking for Goddard's patents and depending on the German team for knowledge and guidance; he wrote that information about the patents was not well distributed in the U.S. at that early period, though Germany and the Soviet Union had copies of them. (The Patent Office did not release rocket patents during World War II.)

By 1939, von Kármán's Guggenheim Aeronautical Laboratory at Caltech had received Army Air Corps funding to develop rockets to assist in aircraft take-off. Goddard learned of this in 1940, and openly expressed his displeasure. Malina could not understand why the Army did not arrange for an exchange of information between Goddard and Caltech, since both were under government contract at the same time. Goddard did not think he could be of that much help to Caltech because they were designing rockets with solid fuel, while he was using liquid fuels.

Goddard was concerned with avoiding the public criticism and ridicule he had faced in the 1920s, which he believed had harmed his professional reputation. He also lacked interest in discussions with people who had less understanding of rocketry than he did, feeling that his time was extremely constrained. Goddard's health was frequently poor, as a result of his earlier bout of tuberculosis, and he was uncertain about how long he had to live. He felt, therefore, that he hadn't the time to spare arguing with other scientists and the press about his new field of research, or helping all the amateur rocketeers who wrote to him. In 1932, Goddard wrote to H. G. Wells:

"How many more years I shall be able to work on the problem, I do not know; I hope, as long as I live. There can be no thought of finishing, for "aiming at the stars," both literally and figuratively, is a problem to occupy generations, so that no matter how much progress one makes, there is always the thrill of just beginning."

Goddard spoke to professional groups, published articles and papers and patented his ideas; but while he discussed basic principles, he was unwilling to reveal the details of his designs until he had flown rockets to high altitudes and thus proven his theory. He tended to avoid any mention of space flight, and spoke only of high-altitude research, since he believed that other scientists regarded the subject as unscientific.

However, Goddard's tendency to secrecy was not absolute, nor was he totally uncooperative. In 1945, Caltech was building the WAC Corporal for the Army but was having trouble with the rocket's engine performance. Frank Malina went to Annapolis and consulted with Goddard and they arrived at a solution to the liquid propellant problem, which resulted in the successful launch of the high-altitude research rocket.

During the First and Second World Wars, Goddard offered his services, patents and technology to the military, and made some significant contributions. Several young Army officers, and some higher-ranking ones, believed Goddard's research was important, but were unable to generate funds for his work.

Toward the end of his life, Goddard, realizing he was no longer going to be able to make significant progress alone in his field, joined the American Rocket Society and became a director, and made plans to work in the budding aerospace industry (Curtiss-Wright).

Personal life

On June 21, 1924, Goddard married Esther Christine Kisk (March 31, 1901 – June 4, 1982), a secretary in Clark University's President's office, whom he had met in 1919. She became enthusiastic about rocketry and photographed some of his work as well as aided him in his experiments and paperwork, including accounting. They enjoyed going to the movies in Roswell and participated in community organizations such as the Rotary and Women's clubs. He painted the New Mexican scenery, sometimes with artist Peter Hurd, and played the piano. She played bridge while he read. Esther said Robert participated in the community and readily accepted invitations to speak to church and service groups. The couple did not have children. After his death, she sorted out Goddard's papers and secured 131 additional patents on his work.

Concerning Goddard's religious views, he was raised as an Episcopalian, though he was not personally religious. They were associated with the Episcopal church in Roswell, and he attended occasionally. He once spoke to a young people's group on the relationship of science and religion.

Poor health

Goddard's serious bout with tuberculosis weakened his lungs, affecting his ability to work, and was one reason he liked to work alone, in order to avoid argument and confrontation with others and use his time fruitfully. He labored with the prospect of a shorter than average life span. After arriving in Roswell, Goddard applied for life insurance, but when the company doctor examined him he said that Goddard belonged in a bed in Switzerland (where he could get the best care). Goddard's health began to deteriorate further after moving to the humid climate of Maryland to work for the Navy. He was diagnosed with throat cancer in 1945. He continued to work, able to speak only in a whisper, until surgery was required, and he died in August of that year in Baltimore, Maryland. He was buried in Hope Cemetery in his home town of Worcester, Massachusetts.

Patent settlement

The Guggenheim Foundation and Goddard's estate filed suit in 1951 against the U.S. government for prior infringement of Goddard's patents. In 1960, the parties settled the suit, and the U.S. armed forces and NASA paid out an award of $1 million (half went to his wife), at that time the highest government settlement ever paid in a patent case.

The settlement amount exceeded the total of all the funding for Goddard's work throughout his entire career.


• Goddard was credited with 214 patents for his work; 131 of these were awarded after his death.
• One of his contributions was his influence on people who went on to do significant work in the U.S. space program, such as Robert Truax (USN), Milton Rosen (Naval Research Laboratory and NASA), astronauts Buzz Aldrin and Jim Lovell, Gene Kranz (NASA), astrodynamicist Samuel Herrick (UCLA), and General Jimmy Doolittle (USA and NASA).
• Some of the awards included: the Langley Gold Medal from the Smithsonian Institution in 1960 and the Congressional gold medal in September 16, 1959.
• The Goddard Space Flight Center, a NASA facility in Maryland, was established in 1959. The crater Goddard on the Moon is also named in his honor.
• The Dr. Robert H. Goddard Collection and the Robert Goddard Exhibition Room are housed in the Archives and Special Collections area of Clark University's Robert H. Goddard Library.
• Robert H. Goddard High School was completed in 1965 in Roswell, New Mexico and dedicated by Esther Goddard; the school's mascot is titled "Rockets".
• A small memorial with a statue of Goddard is located at the site where Goddard launched the first liquid-propelled rocket, now the Pakachoag golf course in Auburn, Massachusetts.
• Release 13 of the Linux distribution Fedora is named after Goddard.
• The television series "Star Trek: The Next Generation" had a shuttlecraft named after Goddard.
• Goddard Ave. in Norman, Oklahoma is named in his honor.


Source: http://en.wikipedia.org/wiki/Robert_H._Goddard
No infringement intended. For educational purposes only.